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Abstract 
 
We find evidence of weak informational efficiency in the Brazilian daily foreign exchange 
market using Hurst exponents (Hurst 1951, 1955, Feder 1988), which offer an alternative 
(from statistical physics) to traditional econometric gauges.  We show that a trend toward 
efficiency has been reverted since the crisis of 1999.  We also find power laws (Mantegna 
and Stanley 2000) in means, volatilities, the Hurst exponents, autocorrelation times, and 
complexity indices of returns for varying time lags.  Our findings are also shown to hold in 
an intraday frequency. 
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1. I ntroduction 
 
Previous work has found evidence of weak informational efficiency in the Brazilian daily 
foreign exchange market using standard econometric techniques (Laurini and Portugal 
2002, 2004).  This note replicates such a result but employs Hurst exponents (Hurst 1951, 
1955, Feder 1988), which offer an alternative gauge of informational efficiency (Cajueiro 
and Tabak 2004) from the perspective of statistical physics.  Standard deviation in 
independent, normally distributed series behaves as ( ) Ht tσ : , where H = ½ and t is time 
(Gnedenko and Kolmogorov 1968).  The exponent of this scaling relationship between the 
standard deviation of a time series and the time increments used is the Hurst exponent. 

So an exponent H = ½ gives indication of a Brownian motion (random walk), i.e. a 
random process with no long range memory.  The efficient market hypothesis thus assumes 
H = ½.  Therefore values different from ½ suggest long range memory and then that data 
points are not pairwise independent.  Values ranging from ½ to one are indicative of a 
persistent, trend-reinforcing series (positive long range dependence).  And positive values 
that are shorter than ½ suggest antipersistence, i.e. that past trends tend to reverse in future 
(negative long range dependence). 

Yet we go further and show pervasive regularities in the real-dollar returns 
( ) ( ) ( )r t e t t e t≡ + ∆ −  for varying t∆  (where e is the exchange rate in levels).  Studying 

returns by extracting several subsets of non-overlapping price changes ( )r t  by varying t∆  
from 1 to n periods is common in the realm of “econophysics” (Mantegna and Stanley 
2000, chapter 9).  Plots of periods 1 to n against t∆  usually show straight lines on a log-log 
scale (power laws) until some finite date.  Thereafter, scaling breaks down.  Power laws are 
suggestive of lack of a typical scale in a series range (Mantegna and Stanley 2000, chapters 
1, 4).  Symmetry in big and small scales is meant, for instance, that daily changes are 
essentially similar to changes in the intraday frequency (fractality).  Having this in mind, 
we examine the real-dollar returns in both daily and intraday frequencies only to find the 
power laws to be present in both. 
 Section 2 presents data and power laws in the first two statistical moments of 
returns.  Section 3 reckons Hurst exponents and assesses informational efficiency.  Section 
4 shows power laws in autocorrelation time and in a measure of complexity of the series.  
And Section 5 concludes. 
 

2. Data and Power Laws in Statistical Moments 
 
The daily series covers the period from 2 January 1995 to 31 August 2006.  The set is 
obtained from the Federal Reserve website.  The 15-minute spaced set comprises data 
points from 9:30AM of 19 July 2001 to 4:30PM of 14 January 2003 (source: Agora Senior 
Consultants).  The daily series has a unit root in levels but gets stationary in first 
differences.  This is already known in literature with the help of Perron’s test for series with 
structural breaks (Moura and Da Silva 2005).  Thus daily returns are stationary. 
 The daily series presents a structural break at the naked eye in 13 January 1999, 
when a currency crisis struck.  A previous fixed exchange rate regime of “exchange rate 
anchor”  made way for a floating rate.  Yet Table 1 shows the mean to be similar in both 
regimes.  Despite the fact that volatility in the floating regime is about ten times bigger, this 
does not seem to interfere with stationarity of returns’ mean. 
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We detected regularities in these returns ( ) ( ) ( )r t e t t e t≡ + ∆ −  as t∆  was let to vary 
from 1 to 1000.  Not surprisingly, both the means and volatilities grow as t∆  is raised.  Yet 
it is remarkable that power laws govern the changes.  Figures 1 and 2 show these findings 
for both the daily and intraday data.  The statistical moments can thus be expressed as 

βω )( t∆ , where the effect of ω on the moments is larger the greater t∆  is (Gleria et al. 
2002). 

Scaling symmetry in moments is dubbed “structure function analysis”  and can be 
exploited for forecasting (Richards 2004).  Moreover, it is related to the degree of multi-
fractality (Schmitt et al. 2000) of a series and informs the type of the underlying 
distribution. 
 

3. Informational efficiency and Hurst exponent 
 
For the entire sample of single returns ( 1=∆t ) of the daily real-dollar rate, we reckoned a 
Hurst exponent H = 0.54.  The exponent is also similar for portions of the dataset (Table 1).  
And for the intraday data, H = 0.52.  These figures are compatible with the finding of weak 
efficiency in the (daily) real-dollar market, i.e. they are slightly different from ½.  Yet there 
is also room for autocorrelation in the series. 
 As t∆  is raised in the definition of returns, the Hurst exponents are expected to 
grow (because aggregation is heightened).  Yet, surprisingly, there are power laws 
governing the growth pace of the exponents (Figure 3). 

The exponents above were calculated using Chaos Data Analyzer (Sprott and 
Rowlands 1995), whose program does not rely on rescaled range (R/S) analysis (Hurst 
1951).  Since the value of the variable on average moves away from its initial position by 
an amount proportional to the square root of time (in which case H = ½, as observed), the 
program plots the root-mean-square displacement versus time, using each point in the time 
series as an initial condition.  The slope of this curve is the Hurst exponent.  (More details 
on this technique can be found in Sprott 2003.) 

We also reckoned the exponents using R/S analysis.  Given that the variable 
displacement scales as the square root of time, Hurst expressed the absolute displacement in 
terms of rescaled cumulative deviations from the mean ( n nR S ) and defined time as the 

number of data points (n) used.  The scaling exponent of the relationship H
n nR S cn=  

(where c is a constant) is now the Hurst exponent.  If data are independent, the distance 
traveled will increase with the square root of time and H = ½.  Our calculations with R/S 
analysis showed even bigger exponents, thereby reinforcing the case for slight departure 
from efficiency.  In the best fit to straight line )ln(62886.0536.0)](/)(ln[ nnSnR +−= , a 
Hurst exponent H = 0.63 is implied for the daily data.  As for the intraday data, the best fit 

[ ]ln ( ) ( ) 0.710114 0.622155ln( )R n S n n= − +  suggests that H = 0.62. 

Most studies in literature finding H ≠ ½ fai l to provide an accompanying 
significance test (Couillard and Davison 2005).  Thus we carried out Couillard and 
Davison’s suggested test for the exponents above (Table 2).  We found both exponents to 
be statistically significant with p–value < 0.001. 

R/S analysis has been criticized for not properly distinguishing between short and 
long range memory (Lo 1991).  Suggested modifications (Lo 1991), however, present a 
bias against the hypothesis of long range dependence (Teverovsky et al. 1999, Willinger et 
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al. 1999).  More recently, it has been suggested to filter R/S analysis by an AR(1)–
GARCH(1, 1) process (Cajueiro and Tabak 2004).  (We will adopt this suggestion below.)   

We also examined time-varying Hurst exponents (reckoned by R/S analysis) to 
evaluating whether the series gets more or less efficient as time goes by (Cajueiro and 
Tabak 2004).  When examining the time evolution of the Hurst of daily real-dollar returns 
(Figure 4), we considered a moving time window of four years (1008 observations at a 
time).  Then we checked the respective histogram to examine whether the exponents are 
normally distributed, in which case variations should be ascribed to measurement errors.  
Data were filtered by an AR(1)–GARCH(1, 1) process given by 1 1( ) ( 1) ( )r t a r t tψ ε= + − + , 

( ) ( ) ( )t s t h tε = , )()1()1()( 2
2

1 tDthtbth Ψ+−Θ+−Θ+= ε , where a, b, ψ, Ψ, Θ1, Θ2 are 

estimated parameters, h(t) is conditional variance of the residuals, and s(t) is assumed to be 
normally distributed and independent of s(t′), for t ≠ t′. 

Figure 4 shows the Hurst approaching ½ by nearly observation 1010 (December 
1998), after a previous overshooting.  This means that the market gets more efficient.  Yet 
from December 1998 on the Hurst moves away from ½.  Figure 4 also shows the 95 percent 
confidence bounds using Couillard and Davison’s test, i.e. 0.4811 and 0.6277 respectively 
(under the null hypothesis that the time series is both independent and Gaussian). 

Our finding makes sense.  Until December 1998 the Brazilian central bank had 
devalued the currency at nearly 0.003 per cent on a daily basis.  Since market participants 
could easily take advantage of such a piece of information, it is not so surprising the market 
to become more efficient.  After the currency crisis of 13 January 1999, the real-dollar rate 
was let to float.  Several shocks, ranging from domestic macroeconomic and political 
problems to contagion of foreign currency crises, have made the processing of new 
information hitting the market more difficult.  And this might explain why the foreign 
exchange market has become less efficient since then. 

For the intraday data (not shown), we employed a moving time window of 6085 
data points (nearly one year) at a time.  Yet the analysis proved not to be robust because the 
histogram resembled a Gaussian. 
 

4. Autocor relation time and complexity 
 
Because the Hurst exponents calculated are compatible with the presence of 
autocorrelation, we examined the behavior of the autocorrelation time, which measures 
how much a current observation depends on the previous ones.  The autocorrelation time is 
expected to increase with t∆ .  Yet that power laws govern their growth rate is surprising 
(Figure 5). 
 Related to both the Hurst exponent and autocorrelation time is the index of Lempel-
Ziv (LZ) complexity relative to Gaussian white noise (Lempel and Ziv 1976, Kaspar and 
Schuster 1987).  An LZ index of zero is associated with perfect predictability, and an index 
of about one gives piece of evidence of genuine randomness (maximum complexity).  To 
reckon the algorithmic complexity of a series, a data point is converted into a binary figure 
and then compared to the median of the entire series. 
 For single returns ( 1=∆t ) of the daily real-dollar rate we found LZ = 1.04 (for the 
intraday data, LZ = 0.99).  Such figures are consistent with both weak efficiency and the 
Hurst exponents above.  As t∆  is raised, heightened aggregation introduces more structure 
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in the series, these get more predictable, and thus the LZ index tends to decay to zero.  Yet 
it is still remarkable that power laws govern the decays (Figure 6). 
 

5. Conclusion 
 
We find Hurst exponents that are not at odds with the usual result in econometric studies 
that the daily real-dollar market is weakly efficient.  Time-varying Hurst exponents also 
show that a trend toward informational efficiency has been reverted since the crisis of 1999.  
Central bank intervention turned the market more predictable, more informationally 
efficient, but might also have precipitated the crisis. 
 Allowing the time lag to rise in the definition of returns, we find power laws in 
mean, volatility, Hurst exponent, autocorrelation time, and a complexity index.  Our results 
are also found to hold for an intraday set of data, thereby suggesting self-similarity in the 
series. 
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Table 1  Daily Real-Dollar Returns’  Descriptive Statistics and Hurst Exponent 
 
Time Period 2 Jan 95−12 Jan 99 13 Jan 99−31 Aug 06 2 Jan 95−31 Aug 06 
Data Points 1009 1921 2930 
Mean 0.00036 0.00043 0.00044 
Standard Deviation 0.002 0.029 0.024 
Skewness 0.73 0.02 0.06 
Kurtosis 32.82 8.96 15.2 
Hurst Exponent 0.55 0.51 0.54 
 
 
 
 
Table 2  Couillard and Davison’s Significance Tests for the Hurst Exponents Calculated by 
R/S Analysis 
 
Time Period 2 Jan 95−31 Aug 06 9:30AM 19 Jul 2001–4:30PM 14 Jan 2003 

Data Points 2930 9327 
Hurst Exponent 0.63 0.62 
|t statistic| 3.26 4.43 
 p–value < 0.0006 < 0.00001 
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(a) 
 

(b)

Figure 1. Log-log plots of means (vertical axes) versus t∆ = 1, …, 1000 (horizontal axes).  Power laws 
(straight lines) emerge for increasing lags of the daily (a) and intraday (b) real-dollar returns. 
 
 
 

 
(a) (b)

Figure 2. Power laws in standard deviations (logs in vertical axes) for increasing lags (logs of t∆  in 
horizontal axes) of the daily (a) and intraday (b) real-dollar returns. 
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(a) 
 

(b) 

 

(c) 

  (d) 
 

(e) 

 

(f) 

Figure 3. Power laws in the Hurst exponents (logs in vertical axes) for daily (a, b, c) and intraday (d, e, f) 
real-dollar returns when the time lag is raised in the definition of returns (logs of t∆  in horizontal axes). 
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Figure 4.  Time varying Hurst exponents for the daily real-dollar rate filtered by an AR(1)−GARCH(1, 1) 
(top), and their histogram (bottom).  Horizontal lines are upper and lower 95 percent confidence bounds under 
the null hypothesis that the time series is both independent and Gaussian. 
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(a) 
 

(b)

Figure 5. Power laws in autocorrelation time (logs in vertical axes) for increasing lags of the daily (a) and 
intraday (b) real-dollar returns (logs of t∆  in horizontal axes). 
 
 

 
(a) 

 
(b) 

Figure 6. Power laws in relative LZ complexity (logs in vertical axes) for increasing lags of the daily (a) and 
intraday (b) real-dollar returns (logs of t∆  in horizontal axes). 
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